Skoda’s new processing line for plasma coating launched

Plasma coating at Skoda
Plasma coating at Skoda

Škoda Auto has put a new processing line for plasma coating into operation. This concept allows conventional cylinder liners to be replaced with a powder coating that measures just 150 μm (0.15mm).

Škoda Auto has put a new processing line for plasma coating into operation. This concept allows conventional cylinder liners to be replaced with a powder coating that measures just 150μm.

This will now be used when producing the new EVO three-cylinder engines from the EA211 series and will reduce internal friction.

As a result, the 1.0 TSI EVO petrol engines will be more efficient and have lower emissions.

Christian Bleiel, head of component production at Škoda, commented: “The technically highly innovative plasma coating makes our EA211 TSI EVO engines even more efficient. It reduces friction losses and thus also fuel consumption. What’s more, this type of coating also allows heat to be more evenly distributed within the cylinders and helps it to dissipate more efficiently, thus optimising the thermal load. We produce the plasma-coated engines at Mladá Boleslav in three shifts and are installing them in the Fabia, Scala, Octavia, Kamiq and Karoq.”

The Czech car manufacturer has added an assembly line with two special fixtures for plasma coating at its main plant. Both of these include two torches. Škoda has invested a total of €28.8 million in upgrading the plant in this way.

During the production process, the cylinders are first bored on the machining line. A 1,500W laser then abrades the cylinder bores to ensure that the plasma layer will optimally adhere to the surface.

This involves the laser beam creating ten grooves per millimetre, each measuring an average depth of 40μm. This production step takes place in a controlled atmosphere filled with nitrogen to keep the laser’s optics free from contamination and to ensure the necessary level of accuracy.

A mixture of hydrogen and argon is used to create plasma gas, requiring 4.5L of hydrogen per minute during the process. The plasma reaches a temperature of 15,000°C and is then mixed with various types of steel that have been ground into fine powder. This powder is made up of iron, carbon, silicon and manganese as well as other necessary elements. The individual powder grains measure no more than 50μm.

When sprayed onto the cylinder walls, the molten powder forms a layer measuring approximately 250μm. During final processing, this layer is honed out, so that it measures just 150μm. To put all of this in perspective: the wall of a conventional cylinder liner is 4mm thick.

Each cylinder is automatically measured at several stages throughout the process to assess its quality. Optical measuring instruments first record the surface abraded by the laser, before a second measurement is taken once the plasma has been applied. Finally, the structure of the plasma layer is tested using turbulent flow.

Skoda www.skoda-auto.com

Related Articles

Chris Kenward rewarded for services to industry

Chris Kenward, process engineering manager at subcontract induction heat treatment specialist Ajax Tocco has won a prestigious ‘Meritorious Service to the Heat Treatment Industry’ award.
7 years ago News
Most recent Articles

Bruderer press purchased at MACH 2024

A specialist supplier to F1, automotive and aerospace sectors is looking to increase its tool try-out capacity by purchasing its first Bruderer press at MACH 2024.
1 day ago News

Login / Sign up